4 research outputs found

    A study of English-Chinese Simultaneous Interpreting in Conference on Women Rights Under Chernov’s Compression Theory

    Get PDF
    Simultaneous interpreting (SI) means the conveying of information of speakers by interpreters fluently and simultaneously with no long pauses. According to Gile’s theory (1995), interpreters have to possess three abilities, including listening and analysis, production and memory. Given the extreme situation of SI, interpreters must have a nice command of processing strategies to ensure a good delivery. And one of the most important strategies is compression proposed by Chernov (2004). To Chernov’s mind, compression is divided into syllabic compression, lexical compression, semantic compression, syntactic compression and situational compression. The paper mainly discusses the application of compression strategy in E-C discourse under different circumstances

    Silencing MicroRNA-134 Alleviates Hippocampal Damage and Occurrence of Spontaneous Seizures After Intraventricular Kainic Acid-Induced Status Epilepticus in Rats

    Get PDF
    Epilepsy is a disorder of abnormal brain activity typified by spontaneous and recurrent seizures. MicroRNAs (miRNAs) are short non-coding RNAs, critical for the post-transcriptional regulation of gene expression. MiRNA dysregulation has previously been implicated in the induction of epilepsy. In this study, we examined the effect of silencing miR-134 against status epilepticus (SE). Our results showed that level of miR-134 was significantly up-regulated in rat brain after Kainic acid (KA)-induced SE. TUNEL staining showed that silencing miR-134 alleviated seizure-induced neuronal apoptosis in the CA3 subfield of the hippocampus. Western blot showed that a miR-134 antagonist suppressed lesion-induced endoplasmic reticulum (ER) stress and apoptosis related expression of CHOP, Bim and Cytochrome C, while facilitated the expression of CREB at 24 h post KA-induced lesion in the hippocampus. Consistently, silencing miR-134 significantly diminished loss of CA3 pyramidal neurons using Nissl staining as well as reducing aberrant mossy fiber sprouting (MFS) in a rat epileptic model. In addition, the results of EEG and behavior analyses showed seizures were alleviated by miR-134 antagonist in our experimental models. These results suggest that silencing miR-134 modulates the epileptic phenotype by upregulating its target gene, CREB. This in turn attenuates oxidative and ER stress, inhibits apoptosis, and decreases MFS long term. This indicates that silencing miR-134 might be a promising intervention for the treatment of epilepsy
    corecore